混凝土裂縫分析論文
時(shí)間:2022-07-07 08:56:00
導(dǎo)語:混凝土裂縫分析論文一文來源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。
摘要:本文分析比較了國內(nèi)外多座預(yù)應(yīng)力混凝土橋梁采用懸灌掛籃的設(shè)計(jì)優(yōu)化指標(biāo),結(jié)合韓家店1號(hào)特大橋的掛籃設(shè)計(jì),在掛籃形式上選取了有比較優(yōu)勢的三角形掛籃。文中對該種類型的掛籃各構(gòu)件的傳力機(jī)理做了仔細(xì)研究,而且建立了3D空間有限元模型,詳細(xì)分析了在施工過程中和行走過程中掛籃各構(gòu)件的受力和變形情況,設(shè)計(jì)符合使用要求,掛籃較大的整體剛度也將對施工變形及線型標(biāo)高的控制有益。
關(guān)鍵詞:連續(xù)剛構(gòu)懸臂施工掛籃設(shè)計(jì)有限元
1.工程概況
韓家店1號(hào)特大橋是國道主干線重慶至湛江公路貴州省境內(nèi)崇溪河至遵義高速公路上的一座特大型三跨預(yù)應(yīng)力混凝土連續(xù)剛構(gòu)橋,該橋主橋全長為454m,跨徑設(shè)置為122m+210m+122m。該橋箱梁0號(hào)段長15m,其中橋墩兩側(cè)各外伸1.5m,每個(gè)“T”構(gòu)沿縱橋方向分為36個(gè)對稱梁段,梁段數(shù)及梁段長度從根部至跨中分別為10×2.2m,10×2.5m,13×3m,3×3.5m。橋體按整幅設(shè)計(jì),箱梁采用單箱單室截面,頂板寬22.5m,底板寬11m,外翼板懸臂長5.57m,梁高由0號(hào)塊處的12.5m以半拋物線形式從根部過度到跨中的3.5m。
2.掛籃形式的選取
2.1分段施工法與懸灌掛籃的演化
預(yù)應(yīng)力混凝土橋梁的分段施工法是從預(yù)應(yīng)力原理、箱梁設(shè)計(jì)和懸臂施工法綜合演進(jìn)而成的。自從二十世紀(jì)五十年代PC箱梁的分段施工法在西歐誕生以來[1],國內(nèi)外大跨度橋梁多采用此法。除懸臂拼裝法以外,尤其是特大橋梁中更是普遍應(yīng)用平衡懸臂灌筑法——即單“T”的每一個(gè)設(shè)計(jì)節(jié)段利用掛籃對稱就地澆筑混凝土。懸臂灌筑法中不需要象滿堂支架法那樣大量的施工支架和臨時(shí)設(shè)備,不影響橋下通航和通車,施工不受季節(jié)、河道水位的影響。
平衡懸灌法施工的成敗及質(zhì)量控制的優(yōu)劣在于掛籃的工藝設(shè)計(jì),掛籃設(shè)計(jì)的好壞直接影響到施工進(jìn)度,它是特大橋梁施工中的一項(xiàng)關(guān)鍵技術(shù)。
就掛籃總重與懸澆最大梁段的重量比而言,PC橋梁的懸臂施工掛籃的演化過程[2][3]大致經(jīng)歷了從平行桁架式,三角型組合梁式,曲弦桁架式(或稱弓弦式),菱形式到滑動(dòng)斜拉式的階段變化。特點(diǎn)是結(jié)構(gòu)越來越輕型化,受力越來越合理,有些掛籃的行走系統(tǒng)還設(shè)計(jì)有統(tǒng)一的液壓伺服裝置來控制掛籃的升降和行走,使得掛籃操作及施工控制越來越趨向智能化[4]。
2.2掛籃設(shè)計(jì)的輕型化
目前,掛籃已向輕型、重載方向發(fā)展。其中可以用兩個(gè)主要控制指標(biāo)β,β’來反映掛籃的設(shè)計(jì)優(yōu)化與否。設(shè)定β=掛籃總重/懸澆節(jié)段重量,β’=主承重結(jié)構(gòu)/懸澆節(jié)段重量。
β值越低,表示承受節(jié)段單位重量使用的掛籃材料越省,整個(gè)掛籃(包括模板)設(shè)計(jì)越合理;β’值越低,表示掛籃主承重構(gòu)件使用的材料越省,設(shè)計(jì)越合理。另外,減輕掛籃自重采用的手段除優(yōu)化結(jié)構(gòu)形式外,最重要的措施是不設(shè)平衡重,并改善滑移系統(tǒng),同時(shí)改進(jìn)力的傳遞系統(tǒng)。
圖1列出了國內(nèi)外20座大橋的的β值分布,其中最大為2.18,最小為0.31。
圖1國內(nèi)外20座大橋的β值分布
2.3韓家店掛籃形式的選取
因懸灌施工中有多種因素制約掛籃的布置和結(jié)構(gòu)設(shè)計(jì),如施工狀態(tài)大橋主梁的強(qiáng)度及變形要求,近海施工風(fēng)荷載的影響,吊機(jī)的噸位及安裝位置等等。一般來說,采用的掛籃須滿足:結(jié)構(gòu)簡單,重量輕,安裝、拆除方便,安全可靠,灌注混凝土過程中變形小等特點(diǎn)。
韓家店掛籃形式在參考了平弦無平衡重掛籃、菱形掛籃、弓弦式掛籃、斜拉式掛籃等結(jié)構(gòu)形式后,從中選取了三角形掛籃形式,該掛籃與其它形式掛籃比較有如下突出特點(diǎn):
⑴、三角形掛籃與菱形掛籃相比,降低了前橫梁高度,即掛籃重心位置大大降低,從而提高了掛籃走行時(shí)的穩(wěn)定性。
⑵、結(jié)構(gòu)簡單,拆裝方便,重量較輕。設(shè)計(jì)中三角形掛籃主桁架和主要結(jié)構(gòu)體系采用鋼板和型鋼焊制的箱形結(jié)構(gòu),單件重量較輕,主桁架桿件間采用法蘭結(jié)構(gòu)用高強(qiáng)螺栓連接,易于搬運(yùn)和拆裝。
⑶、該三角形掛籃平衡重系統(tǒng)利用已成形梁段豎向預(yù)應(yīng)力鋼筋作為后錨點(diǎn),取消了平衡重的壓重結(jié)構(gòu)。
⑷、掛籃走行采用液壓走行系統(tǒng),由導(dǎo)梁、走行輪、反扣輪、走行油缸組成,該系統(tǒng)具有掛籃就位準(zhǔn)確、走行速度快、安全可靠等特點(diǎn)。
⑸、該掛籃通用性強(qiáng),稍做改裝即可用于其它幅寬和梁高的橋上。
3.掛籃結(jié)構(gòu)布置
該三角形掛籃由主桁、前橫梁、底籃系統(tǒng)、前吊系統(tǒng)、內(nèi)外?;合到y(tǒng)、后錨系統(tǒng)組成,掛籃總重(含內(nèi)外模)約為1160kN,因模板以及吊桿隨施工過程中截面高度的不斷降低有一部分將會(huì)移去,對跨中合攏梁段所要求的支架重量須小于1300kN是顯然滿足的,所以減小荷載后的掛籃仍然可以作為中跨合攏的支架方案使用??傮w布置圖以及吊掛系統(tǒng)如圖2-1、2-2所示。
4.掛籃的設(shè)計(jì)
4.1掛籃構(gòu)件的傳力過程
考察主梁設(shè)計(jì)截面的形狀,單箱單室的截面形式至多可用8個(gè)相對獨(dú)立的內(nèi)外模板(外頂模2塊+外側(cè)模2塊+底模1塊+內(nèi)頂模1塊+內(nèi)側(cè)模2塊)拼接而成。作為待澆梁段混凝土的支撐面,內(nèi)、外頂模支撐翼緣板與頂板的混凝土重量,模板以上的重量則由間隔分布的8根內(nèi)、外縱滑梁承受,內(nèi)、外縱滑梁則把力傳遞到已澆梁段的頂板和前上橫梁上安裝的吊桿上。待澆腹板和底板混凝土的重量則通過底模傳遞給底欄縱、橫梁,通過前、后下橫梁上安裝的吊帶傳力給已澆梁段的底板和前上橫梁。而前上橫梁的所有荷載則都傳遞到三角形主桁架上,三角形主桁架的前支點(diǎn)和后錨點(diǎn)把力再傳給已澆梁段的頂板。澆注某一節(jié)段混凝土?xí)r掛籃構(gòu)件的傳力過程如圖3所示。
圖3澆注混凝土?xí)r掛籃構(gòu)件的傳力過程
4.2構(gòu)件內(nèi)力的計(jì)算
掛籃必須適應(yīng)整個(gè)施工過程,因施工過程中節(jié)段荷載的不斷變化,掛籃中各桿件的受力也是在不斷變化之中,因此擬訂一個(gè)最不利的施工過程進(jìn)行計(jì)算,既可以優(yōu)化桿件的設(shè)計(jì),又可以確保施工安全。一般而言,擬訂最不利施工過程的依據(jù)是待澆梁段混凝土的總體積最大,總重量最重。按設(shè)計(jì)劃分的單“T”沿36個(gè)梁段的體積分布如圖4所示。因?yàn)楦鳂?gòu)件在所有施工過程中的受力具有相對的獨(dú)立性,有必要根據(jù)設(shè)計(jì)分段的情況把主梁截面細(xì)分,如34#節(jié)段(最長3.5m梁段)混凝土重量可能會(huì)對翼緣板外滑梁和頂板內(nèi)滑梁產(chǎn)生最不利影響,1#節(jié)段(最重2.2m梁段)可能會(huì)對底??v橫梁以及前后吊掛構(gòu)件產(chǎn)生最不利影響。事實(shí)上,根據(jù)設(shè)計(jì)節(jié)段長度的變化,擬訂1#,11#,21#,34#四個(gè)施工節(jié)段混凝土重量對掛籃構(gòu)件的效應(yīng)可以涵蓋其它施工節(jié)段,掛籃構(gòu)件內(nèi)力計(jì)算即以這四個(gè)施工節(jié)段為基準(zhǔn),空掛籃狀態(tài)則以1#施工節(jié)段為基準(zhǔn)計(jì)算。
圖4單“T”沿36個(gè)梁段的體積
計(jì)算中掛籃系統(tǒng)采用空間(桿系+板塊)有限元進(jìn)行彈性分析,其中三角形主桁桿件、橫聯(lián),上、下橫梁,底籃縱梁,內(nèi)、外縱滑梁用梁單元來模擬;吊桿、吊帶用只拉桿單元來模擬;底籃模板采用具有較大剛性的板單元來模擬,計(jì)算模型如圖5所示。這種空間模型較一般采用的平面桿系模型更能反映每根桿件或每塊模板的受力和變形情況,避免了平面桿系模型中三角形主桁片桿件合并帶來的桿件受力、變形平均化問題,對分析各桿件的真實(shí)受力狀態(tài)有益,也對掛籃總體變形及施工標(biāo)高的控制有益。
有限元法計(jì)算中的部分參數(shù)如表1所示。
表1掛籃構(gòu)件內(nèi)力計(jì)算中參數(shù)的選定
序號(hào)
材料
序號(hào)
荷載
⑴
16Mn鋼
[σ]=200MPa
⑴
施工臨時(shí)荷載重
2.0kN/m2
⑵
A3鋼
[σ]=140MPa
⑵
施工沖擊荷載重
1.5kN/m2
⑶
混凝土
容重γ
26.0kN/m3
⑶
模板重量根據(jù)該節(jié)
所用數(shù)量確定
模板采用
定型鋼模
⑷
結(jié)構(gòu)自重
程序自動(dòng)加載
圖5空間計(jì)算模型示意(其中符號(hào):△,▽分別表示支點(diǎn)和吊點(diǎn))
圖中A:三角形主桁架;B,C,D:上、下橫梁;E:內(nèi)、外滑梁;F,G:底籃前后吊帶;H:縱滑梁吊桿;I:底籃模板及縱梁
4.3計(jì)算結(jié)果及分析
表2列出了掛籃在4個(gè)澆筑階段(1#,11#,21#,34#施工節(jié)段)和空掛籃在1個(gè)行走階段(1#→2#施工節(jié)段)的構(gòu)件應(yīng)力計(jì)算結(jié)果。
表2澆筑階段和行走階段掛籃構(gòu)件的最大應(yīng)力(絕對值)(MPa)
桿件
編號(hào)
桿件
名稱
澆筑階段
行走階段
1#
11#
21#
34#
1#→2#
⑴
前后下弦桿
27.2
23.6
23.3
23.1
11.2
⑵
立柱
13.0
11.1
11.0
10.9
4.6
⑶
前后斜桿
40.7
35.1
34.5
34.2
15.0
⑷
前上橫梁
38.4
33.5
34.8
36.2
14.9
⑸
前下橫梁
18.7
15.1
13.1
9.4
4.5
⑹
后下橫梁
22.3
17.5
10.5
6.6
6.0
⑺
底籃縱梁
93.8
73.8
48.8
26.0
3.0
⑻
前吊帶
15.5
13.1
10.2
6.7
3.1
⑼
后吊帶(繩)
35.1
28.1
19.7
11.4
74.7*
⑽
內(nèi)外滑梁
112.4
99.6
113.4
125.1
97.5
⑾
滑梁吊桿
83.0
87.9
94.3
97.9
40.1
注:表中“*”號(hào)表示行走階段后吊點(diǎn)采用鋼絲繩。
與表2中五種工況對應(yīng)的掛籃底籃的最大變形分別為:1#:11.3mm;11#:9.4mm;21#:8.8mm;34#:8.0mm;掛籃從1#行走至2#節(jié)段時(shí)為15.8mm。
從計(jì)算結(jié)果看,掛籃在整個(gè)施工過程中構(gòu)件的應(yīng)力是能夠滿足材料的允許值要求的。澆注混凝土過程中掛籃的變形較小說明掛籃的整體剛度較大,這有益于在實(shí)際施工中對線型及標(biāo)高的控制,進(jìn)而提高施工質(zhì)量。
5結(jié)束語
韓家店1號(hào)特大橋通過選擇三角形掛籃這種合理的掛籃形式,設(shè)計(jì)中充分了解了掛籃在施工過程和走行過程中各構(gòu)件的傳力機(jī)理,對掛籃在各種工況下建立了適用、合理的三維空間有限元模型,以至于能夠比較完整地了解各桿件的受力和變形情況,計(jì)算結(jié)果滿足各施工過程受力和變形的要求。
每一座懸灌施工的大橋都有其自身的特點(diǎn),這需要綜合考慮大橋本身因素以及圍繞大橋伴生的各種因素對掛籃選擇的影響。技術(shù)層面上,對選定的掛籃還需進(jìn)一步優(yōu)化結(jié)構(gòu)形式和桿件的設(shè)計(jì)。輕型、重載的掛籃結(jié)構(gòu)形式對增強(qiáng)施工現(xiàn)場的可操作性、創(chuàng)造經(jīng)濟(jì)效益有著重要意義!
參考文獻(xiàn):
[1]預(yù)應(yīng)力混凝土橋梁分段施工和設(shè)計(jì),[美]小沃爾特·波多爾尼[法]J·M·米勒爾,1986.4,萬國朝,黃邦本譯
[2]PC橋梁懸臂灌注施工掛籃的發(fā)展,王武勤,橋梁建設(shè),1997年第4期,p55~p57
[3]輕型鷹式掛籃的總體設(shè)計(jì),劉剛亮,王中文,橋梁建設(shè),1998年第4期,p62~p64
[4]漢川漢江公路大橋無平衡重液壓掛籃設(shè)計(jì)與施工,傅漢江,范建海,徐明浩,筑路機(jī)械與施工機(jī)械化,1999年第5期,p42~p44
熱門標(biāo)簽
混凝土工程論文 混凝土施工技術(shù) 混凝土裂縫 混凝土施工 混凝土結(jié)構(gòu) 混凝土 混凝土公司 混凝土壩 混凝土梁 混凝土路面 心理培訓(xùn) 人文科學(xué)概論